H=-16t^2+55+4

Simple and best practice solution for H=-16t^2+55+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+55+4 equation:



=-16H^2+55+4
We move all terms to the left:
-(-16H^2+55+4)=0
We get rid of parentheses
16H^2-55-4=0
We add all the numbers together, and all the variables
16H^2-59=0
a = 16; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·16·(-59)
Δ = 3776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3776}=\sqrt{64*59}=\sqrt{64}*\sqrt{59}=8\sqrt{59}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{59}}{2*16}=\frac{0-8\sqrt{59}}{32} =-\frac{8\sqrt{59}}{32} =-\frac{\sqrt{59}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{59}}{2*16}=\frac{0+8\sqrt{59}}{32} =\frac{8\sqrt{59}}{32} =\frac{\sqrt{59}}{4} $

See similar equations:

| 4t=39−20t | | 6y+6=2y+9 | | 7+m/8=-22 | | 15x+(-8)+13x=x | | 188+90+2y=180 | | 0.01^(x)=100 | | -2x-1/4=6+3x | | (4x)+1=x+(-4) | | 4x*20=168 | | 6x*20=168 | | a/4=(10/2) | | 4x+20=168 | | 12n-24=-14-28 | | (2n+4)+6=-9+4(2n+1) | | 3n=9=-6 | | 30d=100 | | 100=x*2 | | 98+9x=180 | | 100=0.5x-5 | | 600=40-x | | 3-3y=5+2y | | 20x+9=6x+5x-18 | | c-4=14 | | -9x-2=-14x+3 | | 6x+5-8x=6x | | 3y+2=4+2y | | 4-5x=25-8x | | y+8=27 | | x^2+60+7x=180 | | p-7/4=3 | | 12=r-7 | | 3x-8=32-1x |

Equations solver categories